Neural Networks project

Kaggle: Cdiscount’s Image Classification Challenge

University of Tartu
Institute of computer science
by A.Potapchuk, V.Fediukov, M.Semikin, V.Mysko

INTRODUCTION

Cdiscount.com generated nearly 3 billion euros last year, making it France’s largest
non-food e-commerce company. While the company already sells everything from TVs to
trampolines, the list of products is still rapidly growing. By the end of this year, Cdiscount.com
will have over 30 million products up for sale.

Currently, Cdiscount.com applies machine learning algorithms to the text description of
the products in order to automatically predict their category. As these methods now seem
close to their maximum potential, Cdiscount.com believes that the next quantitative
improvement will be driven by the application of data science techniques to images.

In this challenge, we will be building a model that automatically classifies the products
based on their images. Cdiscount.com's website can confirm, one product can have one or
several images. The data set is unique and characterized by superlative numbers in several
ways:

- Almost 9 million products: half of the current catalog

- More than 15 million images at 180x180 resolution

- 5270 categories

BACKGROUND

The goal of this competition is to predict the category of a product based on its image(s).
For every product _id in the test set, we should predict the correct category id. This
competition is evaluated on the categorization accuracy of predictions (measured in
percentages).

In this competition we have given data:

train.bson - (Size: 58.2 GB) Contains a list of 7,069,896 dictionaries, one per product.
Each dictionary contains a product id (key: _id), the category id of the product (key:
category_id), and between 1-4 images, stored in a list (key: imgs). Each image list contains a
single dictionary per image, which uses the format: {'picture': b'...binary string...'}. The binary
string corresponds to a binary representation of the image in JPEG format.

test.bson - (Size: 14.5 GB) Contains a list of 1,768,182 products in the same format as
train.bson, except there is no category_id included. The objective of the competition is to
predict the correct category id from the picture(s) of each product id (_id). The category_ids
that are present in Private Test split are also all present in the Public Test split.

category_names.csv - Shows the hierarchy of product classification. Each category_id
has a corresponding levell, level2, and level3 name, in French. The category_id corresponds to
the category tree down to its lowest level. This hierarchical data is useful, but it is not
necessary for building models and making predictions. All the absolutely necessary information
can be found in train.bson.

sample_submission.csv - Shows the correct format for submission.

BSON files, that we are using in this project is a binary-enooded serialixation of JSON-like

docaments, used with MongoDB.

Also, we discovered the relation between id and category (Figure 1). As can be seen from
the picture, blue color response for how strong is the relation. So, dark blue - relation goes to

1, light blue - there is, probably, no relation between category and id number.

+1ed

20000 A

B N o prora— g e
15000 A AT TP W P R AT e N Wt R Y N Y T o

category

|

5000

& Pl L W PRI R L PR T BT 5 WG Ei
ol S e - e

T T T T T T
o 20000 40000 60000 B0000 100000
index

Figure 1

For the better understanding of the data, we should know the most and the least

common categories. Below, there are the most common and the least common categories by

first 3 levels:

category category_levell category_level2 category_level3
1000018296 79640 MUSIQUE cD CD POP ROCK - CD ROCK INDE
1000011423 71116 INFORMATIQUE IMPRESSION - SCANNER TONER - RECUPERATEUR DE TONER
1000011427 69784 INFORMATIQUE IMPRESSION - SCANNER CARTOUCHE IMPRIMANTE
1000014202 65642 LIBRAIRIE LITTERATURE LITTERATURE FRANGAISE
1000015309 65435 LIBRAIRIE AUTRES LIVRES AUTRES LIVRES
1000004085 51942 INFORMATIQUE CONNECTIQUE - ALIMENTATION BATTERIE D'ALIMENTATION INFORMATIQUE
1000010853 61658 TELEPHONIE - GPS ACCESSOIRE TELEPHONE COQUE TELEPHONE - BUMPER TELEPHONE
1000018290 50332 MUSIQUE cD CD MUSIQUE CLASSIQUE
1000018294 57748 MUSIQUE cD CD MUSIQUE DU MONDE
1000008094 56192 INFORMATIQUE COMPOSANT - PIECE DETACHEE DALLE D'ECRAN
1000004079 55656 INFORMATIQUE CONNECTIQUE - ALIMENTATION CHAHBEUR - ADARIATELR SECIELR - ALUE
1000005500 51332 AUTO - MOTO CONFORT CONDUCTEUR ET PASSAGER R - B o e
1000015912 49780 INFORMATIQUE COMPOSANT - PIECE DETACHEE CLAVIER (PIECE DETAGHEE)
1000010835 48438 TELEPHONIE - GPS ACCESSOIRE TELEPHONE BATTERIE TELEPHONE
1000011349 47691 TELEPHONIE - GPS ACCESSOIRE TELEPHONE PACK ACCESSOIRES
Figure 2. The most common categories
1000011519 12 MATERIEL MEDICAL ACUPUNGTURE - MEDECINES PARALELLES VENTOUSE
1000000896 12 EPICERIE CONSERVE DE LEGUME POIVRON EN CONSERVE
1000015609 12 CHAUSSURES - ACCESSOIRES ACCESSOIRES CHAUSSURES ESSUIE-BOTTES - LAVE-BOTTES
1000019484 12 MEUBLE ACCESSOIRE DE MEUBLE COLONNE SUSPENDUE
1000019804 12 SPORT BASEBALL BLOUSON DE BASEBALL - VESTE DE BASEBALL
1000007168 12 SPORT CYCLES TRIPORTEUR
1000022326 12 TV - VIDEO - SON LECTEUR MUSIQUE FEGIEURME RECOND‘T'ONPG‘EMELIE&TUEEUR
1000015046 12 MATERIEL DE BUREAU MATERIEL PEDAGOGIQUE REGISTRE D'APPEL - CAHIER DE CLASSE
1000011955 12 MATERIEL MEDICAL SOIN CATHETER - OBTURATEUR
1000007760 12 PUERICULTURE TOILETTE BEBE EXTENSION DE ROBINET
1000010893 12 PHOTG - OPTIQUE VISIONNAGE PHOTO SCANNER DE DIAPOSITIVE

Figure 3. The least common categories

There was used public kernel [2] as a base of image generator with some changes that

improve a performance.

Architecture

We choose next architectures for this competition: ResNet50, ResNet101, InceptionV3,
InceptionResNetV2, Inception3. Our decision was based mostly on collecting information from
public kernels and relevant to competition chats. Our stack was Keras with TensorFlow
backend, and mostly all of this models are present in Keras. First our steps was using
pretrained models from public kernels (ResNet101) also was added 4 fully connected layers on
top and made additional training, without augmentation. Then we trained ResNet101 and
ResNet50 from beginning (20 epochs with batch 512 for ResNet50 and 128 for ResNet101)
with additional dense, dropout and average pooling layers (the best combination). Also we
gradually froze layers while training. On first 10 epochs was used only first residual block, on
every next 5 epochs the new residual block has been added. This approaches gives us 70.5%
and 71.2%, 67,5% respectively on leaderboard. For this part were responsible Maxim Semikin

and Vladislav Fediukov.

2.30
valid_loss b0
e valid_acc
train_loss train_acc

Loss
Accuracy

0 0.35
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Iteration (1/24 of epoch) Iteration (1/24 of epoch)

Figure 4. Loss of ResNet50

Maxim Semikin also have trained XCeption with additional fully connected layer,

BatchNorm, Dropout and Softmax layers on top. This approach gives us 69% on leaderboard.

xception_180_5270 Batch Log-loss training
9.00
8.00
7.00
6.00
5.00
4.00
3.00

2.00

5.00e+3 1.00e+4 1.50e+4 2.00e+4
-8 xception_180_5270 Batch Log-loss trainin

Figure 5. Loss of Xception
Next architecture was InceptionV3 with additional dropout and average pooling layers
(15 epochs, batch 256). But this architecture showed very slow speed of learning and not high

result - 69%. This was implemented by Viktor Mysko.

inceptionv3_180_5271 Batch Log-loss training

2.00e+4 4.00e+4 6.00e+4 8.00e+4 1.00e+5 1.20e+5 1.40e+5 1.60e+5 1.80e+5

Figure 6. InceptionV3 loss

Anton Potapchuk trained InceptionResNetV2[1] (Figure 7). There is no a split to
validation and test data, because some classes have a very small number of samples (12). So,

splitting to test and validation sets reduce the number of samples more.

Softmax
I
Dropout (keep 0.8)
|
Average Poolng
|
5 % Inceplion-resnel-C
1
Reducion-B
]
10x

Incepbon-resnet-8

1
|

Rdiseban-A b i
[]
|
5 x Incaplion-resnel-A
Soem o Ve rali
|
|
Inpul (2902 S8x3)

et M rlal i

Figure 7. Schema for Inception-ResNet-v2 network
Top layers are GlobalAveragePooling, Dropout with 0.1 rate and dense layer with
softmax activation function. During the first epoch, only the top layer was trained. During the
next three epochs, whole Inception-resnet-C block (top 164 layers) was trained. On the last
epochs, Inception-resnet-B and Inception-resnet-C block was trained (top 507 layers).
Two InceptionResNetV2 models were trained. In the first model, more layers were

trainable (first 2 Inception-resnet-A blocks). Figure 2 shows the learning process of two

models. The whole dataset is 24 epochs, so we can see, that after 24 epochs the accuracy

increased.

Figure 8. Learning progress of the model.

The performance of the single model on the leaderboard ranges from 0.70 to 0.72 and
this two models was best from our single.

Ensembles

Main idea on ensembling was extraction of probabilities of every picture for every
good and built simple classifier on top of them - feed forward network with 2 layers of
random forest. But this approaches showed big overfitting, so we decide take average and
geometric mean of prediction of every picture of two models InteceptionResNetV2 models.

This gave us the best, 0.73083, accuracy on the leaderboard.

References

[1]®hristian SzegedypSergey loffep¥incent Vanhouckepalex Alemid
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
[2]

https://www.kaggle.com/humananalog/keras-generator-for-reading-directly-from-bson

https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ioffe_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Alemi_A/0/1/0/all/0/1

