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INTRODUCTION  

 

Cdiscount.com generated nearly 3 billion euros last year, making it France’s largest            

non-food e-commerce company. While the company already sells everything from TVs to            

trampolines, the list of products is still rapidly growing. By the end of this year, Cdiscount.com                

will have over 30 million products up for sale.  

Currently, Cdiscount.com applies machine learning algorithms to the text description of           

the products in order to automatically predict their category. As these methods now seem              

close to their maximum potential, Cdiscount.com believes that the next quantitative           

improvement will be driven by the application of data science techniques to images. 

In this challenge, we will be building a model that automatically classifies the products              

based on their images. Cdiscount.com's website can confirm, one product can have one or              

several images. The data set is unique and characterized by superlative numbers in several              

ways: 

- Almost 9 million products: half of the current catalog 

- More than 15 million images at 180x180 resolution 

- 5270 categories 

 

 



BACKGROUND 

 

The goal of this competition is to predict the category of a product based on its image(s).                 

For every product _id in the test set, we should predict the correct category_id. This               

competition is evaluated on the categorization accuracy of predictions (measured in           

percentages).  

In this competition we have given data:  

train.bson - (Size: 58.2 GB) Contains a list of 7,069,896 dictionaries, one per product.              

Each dictionary contains a product id (key: _id), the category id of the product (key:               

category_id), and between 1-4 images, stored in a list (key: imgs). Each image list contains a                

single dictionary per image, which uses the format: {'picture': b'...binary string...'}. The binary             

string corresponds to a binary representation of the image in JPEG format. 

test.bson - (Size: 14.5 GB) Contains a list of 1,768,182 products in the same format as                

train.bson, except there is no category_id included. The objective of the competition is to              

predict the correct category_id from the picture(s) of each product id (_id). The category_ids              

that are present in Private Test split are also all present in the Public Test split. 

category_names.csv - Shows the hierarchy of product classification. Each category_id          

has a corresponding level1, level2, and level3 name, in French. The category_id corresponds to              

the category tree down to its lowest level. This hierarchical data is useful, but it is not                 

necessary for building models and making predictions. All the absolutely necessary information            

can be found in train.bson. 

sample_submission.csv - Shows the correct format for submission.  

BSON files, that we are using in this project is a binͻary-enͻcoded seriͻalͻizͻaͻtion of JSON-like               

docͻuͻments, used with MongoDB.  



Also, we discovered the relation between id and category (Figure 1). As can be seen from                

the picture, blue color response for how strong is the relation. So, dark blue - relation goes to                  

1, light blue - there is, probably, no relation between category and id number. 

Figure 1 

 

 

 

 

 

 

 



For the better understanding of the data, we should know the most and the least               

common categories. Below, there are the most common and the least common categories by              

first 3 levels: 

 

Figure 2. The most common categories 

 

Figure 3. The least common categories 

There was used public kernel [2] as a base of image generator with some changes that                

improve a performance. 



Architecture 

We choose next architectures for this competition: ResNet50, ResNet101, InceptionV3,          

InceptionResNetV2, Inception3. Our decision was based mostly on collecting information from           

public kernels and relevant to competition chats. Our stack was Keras with TensorFlow             

backend, and mostly all of this models are present in Keras. First our steps was using                

pretrained models from public kernels (ResNet101) also was added 4 fully connected layers on              

top and made additional training, without augmentation. Then we trained ResNet101 and            

ResNet50 from beginning (20 epochs with batch 512 for ResNet50 and 128 for ResNet101)              

with additional dense, dropout and average pooling layers (the best combination). Also we             

gradually froze layers while training. On first 10 epochs was used only first residual block, on                

every next 5 epochs the new residual block has been added. This approaches gives us 70.5%                

and 71.2%, 67,5% respectively on leaderboard. For this part were responsible Maxim Semikin             

and Vladislav Fediukov. 

 

Figure 4. Loss of ResNet50 



 

Maxim Semikin also have trained XCeption with additional fully connected layer,           

BatchNorm, Dropout and  Softmax layers on top. This approach gives us 69% on leaderboard. 

 

Figure 5. Loss of Xception 

Next architecture was InceptionV3 with additional dropout and average pooling layers           

(15 epochs, batch 256). But this architecture showed very slow speed of learning and not high                

result - 69%. This was implemented by Viktor Mysko. 

 

Figure 6. InceptionV3 loss 



 

Anton Potapchuk trained InceptionResNetV2[1] (Figure 7). There is no a split to            

validation and test data, because some classes have a very small number of samples (12). So,                

splitting to test and validation sets reduce the number of samples more. 

 

Figure 7. Schema for Inception-ResNet-v2 network 

Top layers are GlobalAveragePooling, Dropout with 0.1 rate and dense layer with            

softmax activation function. During the first epoch, only the top layer was trained. During the               

next three epochs, whole Inception-resnet-C block (top 164 layers) was trained. On the last              

epochs, Inception-resnet-B and Inception-resnet-C block was trained (top 507 layers).  

Two InceptionResNetV2 models were trained. In the first model, more layers were            

trainable (first 2 Inception-resnet-A blocks). Figure 2 shows the learning process of two             



models. The whole dataset is 24 epochs, so we can see, that after 24 epochs the accuracy                 

increased. 

 

Figure 8. Learning progress of the model. 

The performance of the single model on the leaderboard ranges from 0.70 to 0.72 and               

this two models was best from our single.  

Ensembles  

Main idea on ensembling was extraction of probabilities of every picture for every             

good and built simple classifier on top of them - feed forward network with 2 layers of                 

random forest. But this approaches showed big overfitting, so we decide take average and              

geometric mean of prediction of every picture of two models InteceptionResNetV2 models.            

This gave us the best, 0.73083, accuracy on the leaderboard. 
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