
Neural Networks project

Kaggle: Cdiscount’s Image Classification Challenge

University of Tartu

Institute of computer science

by A.Potapchuk, V.Fediukov, M.Semikin, V.Mysko

INTRODUCTION

Cdiscount.com generated nearly 3 billion euros last year, making it France’s largest

non-food e-commerce company. While the company already sells everything from TVs to

trampolines, the list of products is still rapidly growing. By the end of this year, Cdiscount.com

will have over 30 million products up for sale.

Currently, Cdiscount.com applies machine learning algorithms to the text description of

the products in order to automatically predict their category. As these methods now seem

close to their maximum potential, Cdiscount.com believes that the next quantitative

improvement will be driven by the application of data science techniques to images.

In this challenge, we will be building a model that automatically classifies the products

based on their images. Cdiscount.com's website can confirm, one product can have one or

several images. The data set is unique and characterized by superlative numbers in several

ways:

- Almost 9 million products: half of the current catalog

- More than 15 million images at 180x180 resolution

- 5270 categories

BACKGROUND

The goal of this competition is to predict the category of a product based on its image(s).

For every product _id in the test set, we should predict the correct category_id. This

competition is evaluated on the categorization accuracy of predictions (measured in

percentages).

In this competition we have given data:

train.bson - (Size: 58.2 GB) Contains a list of 7,069,896 dictionaries, one per product.

Each dictionary contains a product id (key: _id), the category id of the product (key:

category_id), and between 1-4 images, stored in a list (key: imgs). Each image list contains a

single dictionary per image, which uses the format: {'picture': b'...binary string...'}. The binary

string corresponds to a binary representation of the image in JPEG format.

test.bson - (Size: 14.5 GB) Contains a list of 1,768,182 products in the same format as

train.bson, except there is no category_id included. The objective of the competition is to

predict the correct category_id from the picture(s) of each product id (_id). The category_ids

that are present in Private Test split are also all present in the Public Test split.

category_names.csv - Shows the hierarchy of product classification. Each category_id

has a corresponding level1, level2, and level3 name, in French. The category_id corresponds to

the category tree down to its lowest level. This hierarchical data is useful, but it is not

necessary for building models and making predictions. All the absolutely necessary information

can be found in train.bson.

sample_submission.csv - Shows the correct format for submission.

BSON files, that we are using in this project is a binͻary-enͻcoded seriͻalͻizͻaͻtion of JSON-like

docͻuͻments, used with MongoDB.

Also, we discovered the relation between id and category (Figure 1). As can be seen from

the picture, blue color response for how strong is the relation. So, dark blue - relation goes to

1, light blue - there is, probably, no relation between category and id number.

Figure 1

For the better understanding of the data, we should know the most and the least

common categories. Below, there are the most common and the least common categories by

first 3 levels:

Figure 2. The most common categories

Figure 3. The least common categories

There was used public kernel [2] as a base of image generator with some changes that

improve a performance.

Architecture

We choose next architectures for this competition: ResNet50, ResNet101, InceptionV3,

InceptionResNetV2, Inception3. Our decision was based mostly on collecting information from

public kernels and relevant to competition chats. Our stack was Keras with TensorFlow

backend, and mostly all of this models are present in Keras. First our steps was using

pretrained models from public kernels (ResNet101) also was added 4 fully connected layers on

top and made additional training, without augmentation. Then we trained ResNet101 and

ResNet50 from beginning (20 epochs with batch 512 for ResNet50 and 128 for ResNet101)

with additional dense, dropout and average pooling layers (the best combination). Also we

gradually froze layers while training. On first 10 epochs was used only first residual block, on

every next 5 epochs the new residual block has been added. This approaches gives us 70.5%

and 71.2%, 67,5% respectively on leaderboard. For this part were responsible Maxim Semikin

and Vladislav Fediukov.

Figure 4. Loss of ResNet50

Maxim Semikin also have trained XCeption with additional fully connected layer,

BatchNorm, Dropout and Softmax layers on top. This approach gives us 69% on leaderboard.

Figure 5. Loss of Xception

Next architecture was InceptionV3 with additional dropout and average pooling layers

(15 epochs, batch 256). But this architecture showed very slow speed of learning and not high

result - 69%. This was implemented by Viktor Mysko.

Figure 6. InceptionV3 loss

Anton Potapchuk trained InceptionResNetV2[1] (Figure 7). There is no a split to

validation and test data, because some classes have a very small number of samples (12). So,

splitting to test and validation sets reduce the number of samples more.

Figure 7. Schema for Inception-ResNet-v2 network

Top layers are GlobalAveragePooling, Dropout with 0.1 rate and dense layer with

softmax activation function. During the first epoch, only the top layer was trained. During the

next three epochs, whole Inception-resnet-C block (top 164 layers) was trained. On the last

epochs, Inception-resnet-B and Inception-resnet-C block was trained (top 507 layers).

Two InceptionResNetV2 models were trained. In the first model, more layers were

trainable (first 2 Inception-resnet-A blocks). Figure 2 shows the learning process of two

models. The whole dataset is 24 epochs, so we can see, that after 24 epochs the accuracy

increased.

Figure 8. Learning progress of the model.

The performance of the single model on the leaderboard ranges from 0.70 to 0.72 and

this two models was best from our single.

Ensembles

Main idea on ensembling was extraction of probabilities of every picture for every

good and built simple classifier on top of them - feed forward network with 2 layers of

random forest. But this approaches showed big overfitting, so we decide take average and

geometric mean of prediction of every picture of two models InteceptionResNetV2 models.

This gave us the best, 0.73083, accuracy on the leaderboard.

References

[1]ͻ ͻChristian Szegedyͻ, ͻSergey Ioffeͻ, ͻVincent Vanhouckeͻ, ͻAlex Alemiͻ.

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

[2]

https://www.kaggle.com/humananalog/keras-generator-for-reading-directly-from-bson

https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Szegedy_C/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ioffe_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Vanhoucke_V/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Alemi_A/0/1/0/all/0/1

